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(1) St dF gk O A XTI 25 TR i B
5O 48 B2l Y5 40 29 5K (norm constraint) TG
A G X BN 2R B vp = 2R i B R S 1)
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ZRAEIRE IV N BAD X FURE AR Wit | (EAR 9K T 122 By A
FT 2 A L BIM XA B il | T HLi%
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I FREAEAE Z M B B . FAT ! 18 PGD X HitE
AR Az AR 2B M I AT > BT R AR S S ST AR
RS FANWTERAT | X TATS ARl A5 25 1 B 5 00 14 e
AT PGD-AT etk N 38 fie AL ARG A6 Y SR i
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o BERARLLRE HE BN RS A R i) £ B2 25 F 15 5L
SE SCHAMNT T5E B X B 1) B 373 5 vh W Ak 45
R RYE, IR R OS2 B X L RE RIS 3 A
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PEo XHTBCE AR S s R 5 AR I R A A
15 QAT 4534 H & Xt 5 R &Rt

Yt HiE #1% ( adversarial robustness) ' 5
LR BB X BT S (9 RE 7, AT DA AL 9 (8148 43
FMETH R

F 5B E ( clean dataset) 5 KL X HiIL
i B A I e A A R B A5 A 4R | 3t ki
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PR BIREAS v, o TS HRAEAE A R AR B A2 AT 1
RN | AR A8 SO 5 435 #4045 4 2 DR e Ak
XFPTREA

PR Y X £ 5 20
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T RARTA | L
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FEA X

B2 ETIEEHARNIRERERTEE

SSIM R ERE 457 2 UG, A 4645+ AH A
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(,U,i +,U,f + Cl)(a'i + 0?, +C,)
(2)
Horr, w oy A EEAEA w, A, 735000 « Fy 1Y
YME, o, Mo, 700000 « Fly IbRHEZE , o, x il y
AR SR, €, FC, AEEL
DSSIM 5k eRE 4 TIREM AWM H
B O (E e /AL T SSIML B8 8T B 0 (il 3 AE
[ =1, 1] SR R gk, R URE Bl SSTM (B3 K i
BAR, TCIRARGF b3 1o VR B o 22 X 28 Ao I 25 E A
AR SSIM AT & A i) it Ak B A G A 3 Pl
[ =1, 154 [0, 1 ] Y [] B Fly BP0 14 oR 25028 Ry
LU PRI, LA b 5 R B M 8 I 25 5 R 11 1)

SSIM(x,y) =

Y552 BOHRT, St Y eRORORR O 45 R AR S 4
(DSSIM) 255 R &, AL FRE I E

SSIM( %, , x,)
B ) 3)

ETMERMRBHO S IBERESR E5IA
DSSIM AT A PGD X HUAEAZEARA:
B FE ¢ + 1 RRXSPOREA o BOTHEAE A BR TR
LR UREAS & FIS TS SRR 1, R LK
AN G AT IR BDXHUREAS «f
X SRR AEAS o B2 R R S5 2 MR LA i — 20 A
FEARIE , A RE T A AR 2D St S AR
A G BRI A SRR RS TAEA R B B2 (B BT R
A SR THRCY RTREAS 5 R REAS BOAH S BE A G B
HABEREAIG R F AR PUREA . BRI A I
P2 — IR BEARAE LABT 1R 18R (H B HAR K bR
LGNSR

v =[]+ e sign(V L6, 2, y)))

(4)

# = [ B (V g (x, ) (5)
Horp, VI, FlBd THRREA « 5 NS y
S SR RAE XS TAREAS o FIBBIEAR B, V Ly
7R MR HOREAS o 5 HO R Y IR AEAS & 11
) DSSIM B FREAS o/ BOBRE (S B, sign IAF
SACAE PR PREL, o S S8 UGB S X R A B B AR AR
B A DSSIM AHARLEE 45 26 XoF bz ) A BE AR

ETHSMAABPNMBERER 4 Tit—
AL I 8] O B 3 T 006 S R 5 B R T
P A SCHE MY T3 T 0565 451 2% R HI0HY XU RE AR 2 i
Jrik. HROREEEE(S) PISE " BHEEH
HZFC B GEEA «, BN C(4) 5 (5) i
Fra gttt a1 2k s B SRR = (6) .

= ] ey A+ (1 -y) c4) (6)
Hor, A 52 Ui DSSIM VS 2 ffF 54k )5 5
SRR B 25 R A AR R I (7) B
Ro

A =6-sign( V (1,00, x',y) + 1, (v, 2)))

(7)
Hop, 8 RPN K sign A5 104k 7 e
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B, 0 MEERISEL, | R R
2.3 ET DSSIM £ HEARMERSHER

TEFE T DSSIM B Y5 #0203 (o X B AE AR 2 i 2
J& , BIA] A B AR A B T B I 25 B 2 48,
K3 i AE B s A HL AR xR A A
TSGR 40T B AR G 2, AR SCiseH 1 R 20
BRI AL TR 2 R SRR 2

(1) FESHEH T, BTEX Pl
(% A TREAR A B DL MR ST
SRR A G VI R B (B E e A nUEUE )

N CE Y

A PR 4 BT X RE A S i 24
BEA bR AR | SR I R SR, 76 0
Ji AR XHBUREAR A R 5 AR S 0 o
FEEFEL T P U — S A
PR R B BT A A X
BEAR A5 B A5 O 55 4 08 1 2 T 24 28
fedem

0" =0 - VL (%, %) (8)
Fobx,, W32 R REGRBUREA, V(%) R
e« W TS AL 0 HOBEIET .

L TE ol BRI I
A FEA REA FEA
725 B
| -0 | PHR-L | .| AN | W4HRN |
XLl 2% IR (Adversarial training epoch) >
NULEZR g m?}’\iﬁ’fﬁ '/4 4 m?ﬁ’\iﬁﬁ : 4
SR
g0 1 | BN |

B3 MEERSHEHFAXTER

(2) AESHEACH T, SRESHE T
AHXERE , O T S TR BTINRCR Wl LU 2
WO 77 2 RIPE XS B G5 A B — FE 4 AR O 4t
FEAS, T 28 A5 T 2 J0AE me A8 XV G50 2R AT 3
BT, AN AT A5 9 25 R R 2405 B 2 ST, DT e
ARASE Y BRI U RS B e aHeedy Sk ) AR S s ] 5 225 ] o
B, BRI, N T S O W
INEY T BRI &R, LA BT 1k 2] A R T B 2%
PR BT YN SR 45 5 7 o i e 0 et BT A0 722 3 T X L
Wk, R A T s

i+ ¢ 1 m i i
07 =0 =3 Vil (i ) (9)

o m RIS HOE BRI BE R, 0 IR AIS

DSSIM-AT Xl 4R e R Bk B ab a1 pr
TN BT RN BN T AE (il A 45 O sR BORD
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S FOFE LT DSSIM-AT XUl il 72

BiE 1 DSSIM-AT XTI ZRFEE
BiEBN:

WIZRSEARREA X {x - x ™} I n AMREAR
g

WAEFIEREAPRZE Yy oy ), 5 X P
FEATZ AN L
Hirwad.

R4 RIS ]

#BEHLWI AR AL M 25 B R 25

Randomly initialize network 0?

#PLIZR , epochs AN EFIR T

For epoch in epochs Do

#MYINZREE P RAT: batch BRI ZAEA 5HR%:
Sample a mini-batch of m examples from training set:

Xz fx® e, ] Y= [y, 5|
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#EACHY EE X PUREARS | iterations “HIECHEIR

For iter in iterations Do:
#ARLAE 3. 2 TOXHUREA AR K (6) , M X HUAEA
Generate a mini-batch of m adversarial examples with

CrossEntropy and DSSIM Loss :
Xy = o)y |
End For
# TPV JBE T W 10 BRI H AR I 28 B R 245

9 t
Update the target network’ s parameters f, by the sto-
. . -1
chastic gradient of f = :
1 X i i
Vif = ;Z Vglve(xitﬁ ’ y( ))
i=1

i (-1
0, =6" - V.f
End For

2.4 NG EENES T

g TSR0 b B B A SO B DSSIM-AT X4t
YRI5 2 VENLEE, AT LU RRAIE B 1 ( feature de-
noising ) S FAF—FVE ( consistency representation ) i

Tteration 0

FBEHEATIS LU 4 BT DSSIM 78 X 0 A A A= B LA B2 Xof
Ul it Fe Bk S A1

S S I 7 N O S R i 2 N P
DSSIM FIF3ERE pREE RS B TE B R R, K
A LAE R AT R R M B TR AR &
1 DSSIM AUk BES RS HUREAS | DR AR T 18 A
AR 5 TR, X AR M 2B B T 7 5y = )
B FCIEA F B RMR R , A R0 0 R L8t ™ Az
(189 JCT SCPRCT A 11 - OB T B 1 70 S0 P A8
R, Ak HRLE NP AR B U T
) BIRRF AT AEA —BUE LR, FH A NI A RS AR
PR — BV R AT 3R T XI5 n] fig B, DSSIM
LIS SRR TR RAE—EE R, R A
SCEARE RIS L ABIR BTN ZRAO R POREAS A it
Ferp W Z 4RI FAUALREA (S Xl
Gx , T 2 fif DTN GRS 1R B0, 42 T I 28 A5 8
R

" FAFIFIRIEIEIEIGIBICH

[71 [71 [71 9]

[91 91 91 [91 91 [91

. FFIRRARRRRRR

[71 (71 [71 [71

[71 91 91 [91 91 [91

4 MHBEAEH- e AR REE

1.8

5 MEMERIHERRYRREES

2.5 BEEHRELSW

DSSIM-AT XTI J5 1 75 BE i i 47 52 B L
FH) JCREAE T35 I [8) &2 2% BE | 7 i 330 1Y
I ) f 23 ) 52 A B AT TR AR 437 o

23 (A1 52 2= B 5 1, AEXT TN 2R ds A B B,
BRI K AR, il 2k 32 20 25 [ JF
BTETAAEBAI S S B M | LR B AR AS X I
X IEFRAS Y, XY %5 6] 52 22 B S(DSSIM — AT)
RO MU+ X1+ Y1), H = 1 R = B
AR ] TEXRTHUUIZR A XS PUREAS AR i SRR A 2
BRI B, AR REA X i X s B AR R T
XFHUREAS X7, ARt B I 25 07 12 04 25 6] FF 4 742 Sy
OCI M1+ X' +1 Y1), S¥ate B Befi e —2, mi
A SCRTHEAY DSSIM-AT XTIl 25353125 5 B4 o1 25 1]
MR AEREA LA RIS O M1 +1 X |
+ X' +1 Y1), ATLLE H DSSIM-AT B AR T5 24 A1
23 AL SR IR AR FEAS | (H 2 1) 52 2% FEATS DR 5 2
PEGUI O(N) , Hor N AL JFIRFEA XTHiREAS |
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BEARRAE (023 [l A7 o e

() 52 2% BE D7 I, AEX P GRad B v, 32 A st
(] F45 A 45 A A AR P PSS A O B AR L KA
wld/ MU AR B S B 2 BB, 2 DB BL
Y LA I i) 3554 R LA B 1) A 1 SRR A
B BT R AT P SR i 8] D B
IFTEIAY 2 A, BRI BN ZR 8 | fE XS PUREAS
e B, I 1) £ 4 55 5 1 A% i N 8] A2 2% 4 O
O(1 Oppone | 1 Ol +1 Qi 1) X O one |

L Oy | MO, | 3 BIHE R Z A RURFAE Al I
TR LA R LR AR i 40 24 AR 2 36F 7 ) ek ]
o HAT O | BT 22 R A58 4 1

BG5BT, I e K T2 15 87 o5
ABSTEL, | @, | 32 B T4 A K (9 2 B R
BHEFFE R O(dL, ), For d,, 9 B FEARFRRAE 1
Ak B RN GHER WHEARB R TR, X T AR SOl
FHIY 10 43S EUGEHR AR | PR FEACRRAE A 24 B2 /1N
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Improving adversarial training with DSSIM based non-norm constraint

( " School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing 100049 )
( ™ Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190)
Abstract

Aiming at the robust overfitting problem in the process of adversarial training ( AT) , i.e. , the adversarial de-
fense performance of the network model will not rise gradually but inversely fall to some extent with the increase of
adversarial training rounds, this work proposes a novel adversarial training method that leverages a non-norm con-
straint based on structural dissimilarity, named DSSIM-AT. For the first time, non-norm constraints are introduced
to remove non-semantic features of generated adversarial examples from the structural dissimilarity perspective,
making them more suitable for AT. The proposed method further designs a gradient asynchronous update mechanism,
which optimizes the time-consuming of adversarial examples generation and model parameters update. The experimen-
tal results show that DSSIM-AT can effectively alleviate the robust overfitting problem. Compared with the existing
baseline methods, the proposed DSSIM-AT can improve the recognition accuracy of clean examples on dataset CIFAR-10
by 3% approximately, while the recognition accuracy for adversarial examples can be improved by 4% —8%.

Key words: adversarial attack, adversarial defense, adversarial training( AT) , non-norm constraint
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