GTAT: Adversarial Training with Generated Triplets
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Abstract—To circumvent the grave problem of present adver-
sarial training methods, i.e. distortion of classification surface,
we in this paper propose a generated Triplet-based adversarial
training method-GTAT, in which a Generator generates a semi-
hard Triplet by design, rather than directly invoking the existing
clean examples and adversarial examples. Through this kind
of generated semi-hard Triplet constraint, GTAT can reshape
the classification boundaries appropriately across various classes,
arising from two-facet synergies: i) pull the intra-class examples
together with tight distances; and ii) push away the inter-class
examples with broad distances. This synergy will simplify and
broaden the classification surfaces across different classes. Exten-
sive experiments on the popular MNIST and CIFAR-10 datasets
show that our proposed GTAT significantly outperforms other
state-of-the-art adversarial training methods. We believe GTAT
opens a door for the adversarial training from a new horizon
of rationally generating semi-hard Triplet-satisfied adversarial
training (retraining) examples, instead of straightly performing
retraining on the generated adversarial examples and existing
clean examples, or on the generated adversarial examples only.

Index Terms—adversarial training, adversarial attack, triplet,
adversarial robustness

I. INTRODUCTION

Adpversarial attack has attracted much attention in academics
and industrial community, arising from deliberately-crafted
perturbation on the original/clean examples with human-
imperceptible [28]. To date, a serial of representative adver-
sarial attacks has been figured out from several perspectives,
such as gradient-based FGSM [6], BIM [10], REGSM [23],
MIM [4], optimization-based L-BFGS [22], CW [2], Deep-
Fool [15], and Generated Adversarial Network (GAN)-based
AdvGAN [25], AdvGAN++ [7], GAP [18], AdvCGAN [24].
Accompanied with the adversarial attacks, a line of research
work focusing on the robustness is proposed to defend various
adversarial attacks like an arm race. At present, the proposed
defense countermeasures can be divided into gradient mask-
ing [16], feature denoising [26], network distillation [17],
data compression [5] [8], GAN-based detector [12], [21] and
adversarial training. Nevertheless, recent studies witnessed an
upset fact that several more-powerful adversarial attacks, e.g.
CW [2], PGD [13], BPDA [1], had broken a suite of allegedly
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robust defenses, only render adversarial training somewhat re-
sistant, i.e. leverage the adversarial examples to independently
retrain the target model, or jointly retrain together with original
examples.

In our work, aiming at padding the gap of overfitting and
generalization of adversarial training, we concentrate on how
to reshape the classification surface to enhance the robustness
through mapping the clean examples and adversarial examples
into a vector space to moderately harness the intra/inter-
classification distance. Prior that, we first exhibit the essential
spirit of adversarial training referring to previous study [13]
(Fig. 1 (a)-(c)), along with our core-intent to achieve an ideal
adversarial training fashion (Fig. 1 (d)). Fig. 1 (a) shows
that for clean examples, the neural network model is easy to
learn an accurate classification surface. However, when facing
the adversarial examples, the previously-learned classification
surface is error-prone as shown in Fig. 1 (b), wherein the rect-
angular box centered on a certain side sample will be perturbed
to walk out of the previously-learned classification bounds,
such as the part marked by the red five-pointed stars. To defend
the adversarial attacks, Fig. 1 (c) shows the traditional adver-
sarial training method can reshape the classification surface
by adding adversarial examples into the training dataset, as a
result, a renewed classification surface is generated to improve
the robustness to some extent. However, one severe problem
will be accompanied simultaneously if straightly conflating
the adversarial examples with the original ones, namely this
newborn classification surface is too complicated, and easily
cause the overfitting phenomenon [19]. Thereby, an ideal
solution, as depicted in Fig. 1 (d), is to appropriately thin
the classification surface with three basic purposes: i) simplify
the fitting functions to promote the generalization capability
of DL models; ii) enlarge the inter-classification distance to
address overfitting problem; and iii) draw back the adversarial
examples into the correct classification from the misclassified
clusters to improve the accuracy.

Recently, Madry et. al. [13] used a saddle point (outer-
min-inner-max) formulation to capture the notion of security
against adversarial attacks in a principled manner, and per-
formed adversarial training in consideration of such “outer-
min-inner-max” constraint through directly using the adver-
sarial examples produced by PGD-K attacks. This method
at present gains the state-of-the-art against those first-order
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Fig. 1: A conceptual illustration of adversarial training methods. (a) A set of points that can be easily separated by a simple (in
this case, linear) decision boundary. (b) The simple decision boundary does not separate the [.-balls (here, squares) around
the data points, hence there are adversarial examples (the red stars) that will be misclassified. (¢c) The points with [,.-balls can
be separated by a more complicated decision boundary. (d) The points with [,,-balls can be separated by a simple (compared
to the one in (c) decision boundary, the distance within the category is closer and the distance between the categories is larger.

adversarial attacks, and well matches the description of Fig. 1
(c). In what follows, scholars strives to make the adversarial
training reach the ideal status of Fig. 1 (d).

Since the PGD adversarial training method only uses ad-
versarial examples as the training dataset, it is more suitable
to train the model from scratch rather than the already trained
model. Normally, an intuitive and straightforward improve-
ment is from the retraining operation using the blend dataset
of the original clean examples and adversarial examples, which
we here call M-PGD as ALP [9] does. Base on M-PGD,
ALP [9] performed adversarial training through adding an
logit loss to constrain the distance between clean examples
and PGD-K adversarial examples. Differently, AT?L [11]
adversarial training added a Triplet loss to constrain the dis-
tance between intra-class and inter-class. Instead of randomly
choosing negative example like AT?L does, TLA [14] uses the
hardest one from current mini-batch as the negative example
in Triplet-tuple. All above methods can indeed improve the
efficiency of adversarial training to some extent, however,
their attention is mainly paid to the additional loss function to
optimize the object function, but ignores whether the PGD
adversarial examples for retraining are suitable or not to
generate new and moderate classification surfaces.

To this end, we propose a new adversarial training frame-
work GTAT (Generated Triplet Adversarial Training), through
restrictively generating adversarial examples using GAN with
the requirement of meeting the semi-hard Triplet constraint at
the same time, in this way, the newborn classification surface
would become more attack resilient and general to various
adversarial attacks. In a nutshell, our main contributions can
be summarized below:

o First, we provide in-depth analytics and exploration on
the principle and working mechanisms behind adversarial
training, and point out the rooted-caused vulnerabilities
of the present studies. To circumvent this gap, an ideal
classification surface (Fig. 1 (d)) that the retrained models
should fit is advocated as the retraining goal for the
following adversarial training methods.

o Second, we propose a generated Triplet adversarial train-
ing framework GTAT to achieve the robustness and
generalization against diversities of adversarial attacks. In
GTAT, we utilize the GAN’s Generator to accommodate

the constraint space of Triplet into a semi-hard state
with the purpose of reshaping the classification surface
appropriately.

o Finally, we validate our GTAT in terms of robustness
and generalization against diverse adversarial attacks on
two commonly-used datasets MNIST and CIFAR-10.
Compared to the state-of-the-art baselines, multi-facet
experimental results show our GTAT significantly has
a superior performance on classification accuracy and
generalization capability.

II. RELATED WORK
A. Adversarial Training

The conception of adversarial examples and the idea of
adding adversarial examples to the training set for retraining to
improve the robustness were first introduced in L-BFGS [22].
Madry et al. [13] proposed to train the target network using
the multi-step PGD adversarial examples, it achieves the state-
of-the-art robustness levels against [, attacks on MNIST and
CIFAR-10 datasets. Since then, the adversarial training fashion
has become the foundation to enhance the robustness to date,
replacing other gradient-masking approaches. Accompanied
with the development of various adversarial attacks, some
adversarial training methods, on the basis of inheriting PGD
adversarial training, additionally introduce extra-loss modules
to leash the objective loss function, such as M-PGD, ALP [9],
AT?L [11], TLA [14], by which the adversarial training per-
formance can be promoted to some extent. To be mindful, not
all target model are suitable to execute the adversarial training,
as stated in the work [13], the authors pointed out that when
the capacity of target models was weak or insufficient, the
adversarial training would seriously weaken the performance,
this is because the presence of adversarial examples makes the
decision boundary problem more complicated.

Through bringing in the distance-metric intent, AT?L [11]
leveraged the Triplet loss to implement adversarial training, it
can validly smooth the classification boundary. Nevertheless,
given the restriction on the generation of adversarial examples
by the p-norm constraint, it is usually difficult to obtain hard
Triplet examples through resorting to the existing examples
in the current mini-batch, the adversarial examples and the
original clean examples. Differently from the current research,



our work employs a Generator GG to enforce the three-tuple
(anchor/positive/negative) examples into a semi-hard Triplet,
by which the retrained target model can be enhanced to
improve its robustness.

B. Triplet Loss

Triplet loss is a loss function for ML algorithms wherein
a baseline (anchor) input is compared to a positive (truthy)
input and a negative (falsy) input [3] [20]. Given a three-tuple
Triplet (x®, 2P, 2™), (z*, xP) is referred as a positive (relevant)
pair and (z%,x™) as a negative (irrelevant) pair. According to
the pairwise distance among the three tuples, Triplet can be
divided as three assortments: i) easy Triplet, d(z%, zP) +m <
d(z®, «™); ii) hard Triplet, d(z®, ™) < d(z,zP); iii) semi-
hard Triplet, d(z*, 2P) < d(z®,z") < d(z%, zP) +m. Here m
is a margin value. The original objective function of Triplet
loss can be formulated as follows:
1N
> ma|£(X)
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It is worth noting that for standard training, the difficulty
of using Triplet loss lies in how to mine more hard-type
Triplet, but for adversarial training, the attack characteristics of
adversarial examples often make the formed Triples too hard,
which make it difficult to train the model to gain revenue.
Therefore, in the adversarial training scenario, our goal is to
find semi-hard type Triplets to improve the adversarial training
effect with an ideal output status as shown in Fig. 1 (d).

III. METHODOLOGY
A. Problem Definition

The adversarial training problem is typically cast as the
following “outer-min-inner-max” optimal function to achieve
the significant robustness (class boundary):

meinzjz?eagﬁ(fg (z; +0),yi) (2)
where A = {0 : ||§]|oc < €} for some € > 0. The procedure

of adversarial training is firstly to use adversarial attacks to
approximate the inner maximization over A, subsequently
followed by some variation of gradient descent on the model
parameters 6.

The core operation of our method is at the moment that
after the adversarial examples are generated and before the
model parameters are updated, we will first send the generated
adversarial examples to a Generator for processing, and then
as input into the model to update the parameters, the process
can be formulated as follows:

max
dEA

manﬁ

where G is a Generator, which takes the feature of the
adversarial example (z + J) extracted by the target model fy

C(fo(xi +6),u:), 3)

(fo (@i +0)),5:) “4)

as its input, and outputs the modified feature that becomes
more suitable for updating the parameters of the target model
under Triplet standard, by which the newborn classification
surfaces can be fitted appropriately to leash the inter/intra
distances among clean (anchor), adversarial (positive) and non-
identical label (negative) examples even with the presence of
sophisticated adversarial attacks, e.g. CW or PGD.

B. Overall Framework
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Fig. 2: Overall Architecture of GTAT.

As shown in Fig. 2, the architecture of our proposed
framework GTAT mainly involves three core-components: i)
target network F', it is the target model; ii) Generator G,
it realizes the function that generating appropriate retraining
examples to harness the adversarial training fashion towards
the correct function fitting; iii) Discriminator D, it guides
the loss function to identify correct labels during the course
of adversarial training. Here it is worth noting that both the
Generator GG and Discriminator D are no longer the two basic
parts in the regular GANs, but endowed with specific-functions
for adversarial training purpose. Our method is inspired by the
article HTG [27], which mainly focuses on how to construct
more difficult Triplets on regular face recognition tasks, but
different from it, our GTAT aims at reshaping the generated
adversarial examples to make it more suitable for model
parameter updates.

As defined previously, our designed generated Triplet is
comprised of three elements i.e. anchor example, positive
example and negative example. As described in Fig. 2, the
blue rectangular box represents clean examples x in the
training data set, and the blue rectangular box with red border
represents the adversarial examples x4, corresponding to the
clean examples z, and the red rectangular box represents an-
other group of clean training examples z r(qq,) With different
class from the clean examples z, but with same class into
which the adversarial examples z,4, are misclassified by the
target network F'. The three colored circular dots represent
the features of the corresponding rectangular-box examples
extracted by the target network F' with the further handling
of reshaping and accommodation by the generator GG, which
can be denoted as feat,, featyqy, featp(qqy) respectively. As
defined previously, the relative position of the three-tuple dots
indicates three concrete types of Triplet: easy, semi-hard and
hard.

As exhibited in Fig. 2, the holistic workflow can be pre-
sented as follows: i) first, given a part of clean examples
as anchor primitive in the training dataset, we employ the



commonly-used adversarial attack (e.g. PGD-K) to generate
corresponding adversarial examples; ii) second, sample an-
other set of clean examples belonging to the same categories
into which the generated adversarial examples are misclassi-
fied as negative primitive, by which the generated Triplet is
established; and iii) finally, send the Triplet examples to the
target network £, and obtain its corresponding characteristics
< featyqy, featy, featp(4q4,) >. In consideration of coordinating
the generated Triplet setting, we alternatively denote z,4,, T,
TF(adv) 88 Ta» Tp, Tn respectively. It is worth noting that,
instead of directly calculating Triplet loss, we will first send
the adversarial examples’ features, which are extracted by the
target model F', to the Generator G for reshaping manipu-
lation. Here the Generator G’s mission lies in creating the
so-called semi-hard Triplet, i.e. decline the distance between
the feature from misclassified class featr(qq,), and the feature
from adversarial example feat,q,, and inversely enlarge the
distance between the adversarial example feature feat,q, and
its corresponding clean sample feature feat,. Then, calculate
Triplet and classification loss. To guarantee the capability of
reshaping of the Generator GG, we also introduced a Discrimi-
nator D w.r.t two main functions: i) ensure the quality of the
generated Triplet after being reshaped by the Generator Gj
and ii) retain their labels of the clean and generated examples
unchanged after the Generator GG reshapes the feature, which
leashes the retraining model towards correct direction.

C. Target Network F

The function of target network F' is to extract the input
images and map them into a feature space, the outputs are their
final transformed features (a logit vector or final label). As
mentioned previously, we bring in two radical loss functions
to tutor the generated Triplet adversarial training: classification
and generated Triplet loss functions.

Firstly, the classification loss function is used to ensure
the accuracy of the model’s recognition for each categorical
example, and it can be formulated as follow:

L:F,cls = ‘Cce(F('ra)ala) + ECG(F(J:I))?Z;D)
+£ce(F($n)»ln)7

where L., is the cross-entropy loss function, F' is the target
network, [ is the corresponding label.

Secondly, a generated Triplet loss function is introduced
to optimize and accommodate the intra-class distance and
inter-class distance of the retraining data distribution. It is
worth noting that, unlike the previous Triplet loss-oriented
adversarial training method, we do not directly construct
the Triples from the clean training examples or mix with
adversarial examples, but rather send the constructed Triples
first to the Generator G with the endeavor of optimizing and
reshaping, enforcing it more likely to be a semi-hard type
as much as possible. Thus, we refer to this kind of reshape-
targeted Triplet with Generator GG as generated Triplet Loss:

Lrpri = [d(G(F(2a)), G(F(2p)))
—d(G(F(x4)), G(F(25))) + mly,

®)

(6)

where d is a measurement of distance, m is the margin.

Finally, with co-constraints on classification accuracy and
three-tuple examples for adversarial training, the total loss
function of Target Network F' can be expressed as:

Lr = Lpes+a*Lpir, (7
where o denotes the weight on Triplet-specific loss.

D. Semi-Hard Triplet Generator G

For an input z, let us consider a semi-hard example Genera-
tor G that generates a new adversarial example G(F(z)) € R
by manipulating the feature (logit) representation F(z) of
an input x. Specifically, the Generator G leashes the input
examples as such that pushing the feature representation
vectors from the same category apart, while inversely pulling
the feature representation vectors from different categories
close.

Formulaically, we can minimize the following adversarial
generated Triplet loss to train the Generator G,

L:G,tri - [d(G(F(.’L‘a)),G(F(fL'n)))
—d(G(F(za)), G(F(xp))) + m]4

Meantime, the Generator G ought to preserve the de facto
label of its input features, therefore, we need another constraint
primitive on the Generator G, i.e. a Discriminator D. We
expect that the our new designed Triplet, which is reshaped by
the Generator G, is still more in line with the normal Triplet
distribution, but not too outrageous.

Thus, we define the following loss function to enforce this
label preservation assumption, it can be formulated as:

®)

Las = 5(Leel DG(F (), L)
+Lee(D(GER))). 1) ®
He(DGE@)), ).

Clearly, these two loss implications Lr ¢; and Lg ¢ con-
stitute a pair of adversarial loss functions. Compared with
the previous adversarial training loss functions, F' is trained
through semi-hard Triplets generated by Generator G via
pulling the positive pair closer and pushing the negative pair
apart to meet the margin m. Through this semi-hard Triplet-
specific adversarial training, the reborn target network F'
will become resilient and general against various adversarial
attacks. Thereby, the overall loss function for the Generator G
can be expressed as:

EG’ = ‘CG',cls + B * £G,tri7 (10)

where [ is the weight of L ¢r.

E. Multi-Category Discriminator D

Obviously, merely depending on the above adversarial
mechanism is insufficient to train a generalized and attack
resilient Generator G, this is because it can arbitrarily ma-
nipulate feature representation (logit output) mapped by Target
Network F', without correct-guidance constrain. In an extreme
case, for example, the Generator G could simply output



random vectors to achieve a lower value of Lg tr;, Which
is completely useless for training a target network F'. Thus,
we need properly harness the Generator G through resorting
to other factors, e.g., the Discriminator D, along with the
requirement that its logit output should not change the label
of its input features F'(x).

Given the fact that some generated adversarial examples
exist, the Discriminator D ought to assign one more class,
ie. (K + 1), to categorize the adversarial examples’ feature
vectors, where the K categories represent real classes of
examples, and the last one denotes a fake class. For the three-
tuple Triplet (a, p,n) and the corresponding labels (4,1, 1,,),
we have [, = [, for the positive pair and I, # [, for the
negative pair. Then, we minimize the following loss function
to train the Discriminator D

(1)

The first term enforces the Discriminator D to correctly
classify the feature vectors, which can be expressed as:

éwsm(D(F(a)), la)
+Lom(D(F(p)), 1)
+Lom (D(F(n)), 1n)-

Meanwhile, the second term enables the Discriminator D to
distinguish generated features from the real ones, which can
be expressed as:

['D = [-:D,Teal + v * 'CD,fake-

»CD,real =
(12)

L. sake = 5 (Lan (D(GE(@)): b

+ Lsm(D(G(F(p)
+ Lom(D(G(F(n)

where [y, represents the fake class.

). Lpake) (13)
)
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IV. EXPERIMENT EVALUATION
A. Experiment settings

Datasets and Network Models. We comparatively evalu-
ate and analyze GTAT with other baselines on two popular
datasets: MNIST and CIFAR-10. For MNIST dataset, we use
LeNet and a variant as network models to launch white/black-
box attacks. For CIFAR-10 dataset, we use VGG19 as source
network model and ResNet as target network model to imple-
ment white/black-box attacks. It is worth noting that, on the
one hand, due to the limitation of experimental resources, we
only carried out experiments on network models with small
capacity. On the other hand, this paper focuses on making
fine-tune, not training from scratch, for the trained networks
with normal classification ability. Therefore, experiments on
network model with large capacity will be done in future work.

Attack and Adversarial Training Methods. For each
dataset, we conducted a comprehensive performance evalu-
ation to validate the effectiveness of our proposed GTAT both
in black-box and white-box attack scenarios under a variety
of representative adversarial attacks (FGSM, BIM, PGD-K,
CW), and we also compared five state-of-the-art adversarial
training methods (PGD, M-PGD, ALP, AT?L, TLA). We

TABLE I: Adversarial training results under white-box and
black-box attack on MNIST dataset. The best results of each
column are in bold and underline and the second is bold.

Accuracy (%)
Adv. Train || | Attack
| FGSM || BIM || PGD-20 [ PGD-40 || PGD-100 [ PGD-500 ]| PGD-1000 || CW-200
(a) White-box Attack
No Train | 99.37 | 11.04 0.00 1.09 0.01 0.00 0.00 0.00 4.24
PGD 96.89 | 87.46 | 90.26 90.52 83.01 79.17 78.79 78.84 56.69
M-PGD 98.07 | 90.92 | 92.57 93.87 86.83 82.70 81.88 81.89 58.13
ALP 98.18 | 89.45 | 90.78 91.41 86.71 84.24 84.31 84.24 56.80
AT?L 97.35 || 92.36 || 93.70 94.01 89.70 87.25 86.91 86.95 59.57
TLA | 9695 | 92.90 || 93.90 | 95.09 | 89.76 | 8645 85.90 85.89 52.15
GTAT | 98.68 | 93.33 [ 9477 | 9514 | 9164 | 89.52 | 8936 | 8929 | 6524
) (b) Black-box Attack
No Train | 99.37 | 13.94 | 23.05 11.48 2.37 1.24 1.16 1.22 55.76
PGD 96.89 | 91.08 | 94.65 95.49 94.44 94.31 94.55 94.31 80.54
M-PGD 98.07 | 93.07 | 96.67 97.51 96.49 96.12 96.11 96.14 86.86
ALP 98.18 | 91.86 | 94.78 95.42 94.67 94.56 94.50 94.63 88.94
AT?L [97.35 | 93.88 | 96.69 | 9745 | 9673 | 96.63 95.62 95.59 88.83
TLA | 9695 | 9328 || 96.24 || 97.00 | 9577 | 9637 94.75 95.02 87.19
GTAT | 98.68 | 9437 | 97.07 | 9777 | 97.01 | 97.02 | 9691 | 9687 | 90.89

conduct all of our experiments using PyTorch v1.7.0 on a
single Nvidia 2080 Ti and a CPU memory of 128GB with 24
cores. The size of mini-batch for each experiment is unified
to 512 in the training phase and 1024 in the testing phase.
We conduct 100 epochs of adversarial training for CIFAR-10
and 30 epochs for MNIST respectively, and then evaluate the
defense effectiveness of each method under both white-box
and black-box adversarial attacks. The learning rate is 0.01
for MNIST dataset and 0.1 for CIFAR-10 dataset, and for the
epoch of 50 and 80, we reduce it to 0.01 and 0.001.

Evaluation Metrics. To evaluate the model’s adversarial ro-
bustness, we straightly use the ratio of classification accuracy
(RCA) to reflect the performance:

RCA = Ncorrect/Ntotala (14)

where Nyoq; is the total number of the adversarial examples
in testing dataset, and N et refers to the number of the
adversarial examples which are classified correctly into their
true-label classes by the target model.

Furthermore, we also introduce a distance matrix to micro-
scopically evaluate the performance using the statistics data
on the intra/inter-class distances of the examples.

1 & ,
Distance; j = N Z [f(x7) = f(2] )]z, (15)

n=1

where f is the feature extractor, 7 and j are the i** and j**

class for clean and adversarial examples. N is the number of
sampled examples. || * ||2 is the [3-norm for .

B. Performance Evaluation

1) Under White-Box Adversarial Attacks: We first exhibit
the performance under white-box adversarial attacks, i.e. the
adversary has the knowledge information on target model,
such as its network structure, model parameters, loss function,
etc. Table I (a) shows the robustness results with various
adversarial training methods on the MNIST dataset under four
white-box adversarial attacks (FGSM, BIM, PGD, CW) and
one clean status, wherein the PGD is further assigned with



TABLE II: Adversarial training results under white-box and
black-box attack on CIFAR-10 dataset. The best results of
each column are in bold and underline and the second is
bold.

Accuracy (%)
Adv. Train [ I Attack
|| FGSM ][ BIM [[ PGD-5 ][ PGD-7 ][ PGD-20 ][ PGD-50 [[ CW-20
a) White-box Attack
No Train 95.40 49.73 0.32 1.04 0.01 0.01 0.01 3.61
PGD 85.60 56.09 46.72 54.75 50.65 46.56 46.21 54.60
M-PGD 87.95 59.01 48.02 57.37 51.53 46.45 45.78 56.00
ALP 86.44 58.65 48.48 56.59 52.04 47.25 47.05 56.17
AT?L 87.33 57.92 47.88 56.46 50.93 46.58 46.22 55.00
TLA 87.66 56.29 47.25 56.05 50.74 46.03 45.57 55.16
GTAT || 8910 || 6220 || 52.68 || 6029 || 5610 | 5461 || 5424 | 6246
b) Black-box Attack
No Train 95.40 59.61 43.76 46.62 52.23 46.58 47.41 80.67
PGD 85.60 84.46 85.17 85.06 85.28 85.35 85.04 85.86
M-PGD 87.95 86.13 86.42 86.22 87.13 86.68 86.04 87.69
ALP 86.44 84.72 86.47 86.58 86.51 86.61 86.54 87.18
AT?L 87.33 85.47 86.39 85.66 85.46 85.32 85.40 86.08
TLA 87.66 83.12 83.53 83.83 83.80 83.63 84.74 84.33
GTAT || 89.10 || 86.16 || 89.48 || 88.60 || 83.64 | 8346 || 8837 | 89.62

different-level attack strengths, i.e. PGD-20/40/100/500/1000.
From the experimental result, we can find several observations
as follows.

Adversarial attacks can completely defeat the net-
work model that does not perform adversarial training.
For example, the accuracy severely deteriorates to 1.09%,
0.01%, even 0% under the PGD attacks at the steps of
20/40/100/500/1000. These experimental results witness the
strength of these representative adversarial attacks, especially
as the perturbation enlarges gradually in PGD, and a 200-
iteration optimization in CW.

Network models equipped with adversarial training
strategy have achieved obvious robustness improvement.
In detail, PGD adversarial training can achieve the accuracy
interval [96.89%, 56.69%] under the eight adversarial attacks,
and M-PGD, ALP, AT2L, TLA realize the accuracy intervals
[58.13%, 98.07%], [56.80%, 98.18%], [59.57%, 97.35%],
[52.15%, 96.95%] respectively. Compared to these baselines,
our proposed GTAT can dramatically promote the overall
accuracy intervals [65.24%, 98.68%].

GTAT significantly outperforms other baselines. Our
experiment data have attested that when the PGD adversarial
attack exceeds 100 iterations, its attack capability no longer
increases. As is well known, the CW attack so far has stronger
attack capability than others, and our experimental results also
exhibit this fact in white-box scenarios. Against this powerful
attack, our GTAT achieves an exciting accuracy of 65.24%,
which is far superior to other baseline methods, and gains
5.27% improvement than the best baseline AT L. In addition,
our proposed GTAT also behaves best given other attack cases.
This is because of that our GTAT method better optimizes the
intra-class and inter-class distance of the examples, and we
will do a more detailed qualitative and quantitative analysis
later.

Table II (a) shows the adversarial example recognition
accuracy of each adversarial training method on the CIFAR-
10 data set under different types and intensities of white box

attacks. Compared with the MNIST dataset, we can see that
the network model after adversarial training has an obvious
reduction in the classification accuracy on clean examples.
This is mainly due to the fact that the dataset of the CIFAR-
10 has become more complex in terms of resolution and the
number of channels compared to the MNIST dataset, which
appeals higher requirements on the capabilities of the model.
Nevertheless, AT2L and our GTAT have obtained significantly
better classification accuracy compared to other baselines, and
our GTAT still outperforms AT?L as the best defense against
such attacks.

2) Under Black-Box Adversarial Attacks: Apart from the
performance validation and analytics under white-box attack
scenario, another group of experiments under black-box at-
tacks is provided as well. Table I (b) and Table II (b) re-
spectively show the classification accuracy in black-box attack
scenario under different types of adversarial attacks on the
two datasets, also providing that PGD possesses different-level
intensities of perturbation to produce adversarial examples.
Through the experimental results, we have the following
observations.

Compared to the white-box case, these adversarial at-
tacks perform poorly in black-box scenario. For the MNIST
dataset, the adversarial training methods PGD and M-PGD
carry out accuracy intervals [80.54%, 96.89%] and [86.86%,
98.07%], and ALP, AT?L, TLA accomplish the accuracy
intervals [88.94%, 98.07%], [88.83%, 97.35%] and [87.19%,
96.95%]. Even with poor performance of these adversarial
attacks in this black-box scenario, our GTAT achieves accuracy
interval [90.89%, 98.68%], which significantly outperforms
other baselines against these adversarial attacks.

Compared to the high attack success rate, the well-
known strong CW attack achieves a very low attack success
rate. From the experimental results on CIFAR-10 dataset in
Table I (b), our GTAT realizes best performance compared to
other baselines, while followed by the baseline M-PGD with
the second best results. This on the other hand indicates the
migration of adversarial attacks between target models is not
well. This is because the CW attack pursues the current white-
box model to find a minimum disturbance that can make it
misclassified. When switching to other models, the effect is
often easily compromised.

To sum up, both white-box and black-box experiments
verify that our proposed GTAT is a viable and attack-resilient
adversarial training fashion to resist several representative
attacks like FGSM, BIM, PGD and CW w.r.t. different-level
attack strengths. We think the paramount reason lies in the
appropriately-reshaping capability over multi-class boundaries
through generating semi-hard Triplet constraint retraining ex-
amples in terms of anchor, positive and negative primitives.

C. Analysis on Intra/Inter-class Distance

To further validate the effectiveness of our proposed GTAT,
both qualitative analysis and quantitative analysis are provided.
Qualitative Analysis. Concretely, we respectively sample
500 clean examples from the class/label-1 and class/label-8,
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and then sample 1000 adversarial examples from class/label-1
using PGD-100 adversarial attack for each adversarial training
method. Finally, we use the popular t-SNE visualization tech-
nology to show the distribution of these 2000 examples. Fig. 3
exhibits the distribution of the clean and adversarial examples
with different adversarial training methods. The experimental
results show that our proposed GTAT can well-fit the adversar- " s
ial examples and clean examples into a consistent distribution,
which purports that our generated semi-hard Triplet constraint
can indeed tightly pull the adversarial examples and clean
examples with the identical label together, and simultaneously
push other categories of examples away.

Quantitative Analysis. Fig. 4 shows the statistics of the
intra-class distance and inter-class distance under various ad-
versarial training methods. Different colors represent different
distance values, the lighter the color is the larger the distance
is, and conversely the darker the color is, the smaller the
distance is. Observed from the subfigures, we can see that
our GTAT yields a salient color-disparity compared to the
baselines, this presents it can moderately reshape the bound-
aries across different classes through pulling the intra-class
examples but pushing the inter-class examples, this renders
a high attack-resilient space to refitting the classification
function.

a5
Epoch

(b) PGD

s
Epoch
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Fig. 5: Training-stage accuracy with adversarial examples.

examples and strong examples during the retraining course.
Intuitively, the weak means the examples are generated by
those adversarial attacks turned out to be weak, in contrast, the
strong implies the examples are yielded by those adversarial
attacks attested to be strong. Fig. 5 (a) and Fig. 5 (b) portray
the recognition accuracy on the FGSM-generated weak sample
and PGD-40-generated strong examples after epoch training.
For the sake of clear description of experimental results, we
aggregate each 5 epochs as a group and compute the average,
maximum and minimum accuracies.

Seen from the two groups of experimental results, we obtain
the following observations: i) for both weak examples in
Fig. 5 (a) and strong examples in Fig. 5 (b), our proposed
GTAT can achieve the best performance compared to other
baselines. Also in line with the intuition, the accuracies on
weak examples behave better than that on strong examples,
arising from different-level strengths of FGSM and PGD-40

D. Effects on Adversarial Examples with Different Attack
Strength

We perform two groups of experiments, which use smaller
learning rate and more steps, to showcase the adaptability to
generate semi-hard Triplet for two opposite statuses of weak

attacks; ii) for the weak examples in Fig. 5 (a), our GTAT
can culminate the best accuracy swiftly at the 25th epoch,
compared to the 55th epoch for ALP, and up to the 95th



epoch for FGSM, M-FGSM and AT?L; and iii) for the strong
examples in Fig. 5 (b), the convergence speed to reach the
stable states becomes slowly for GTAT and ALP, which, on
the one hand, indicates the complexity of strong examples, but
on the other hand, our GTAT can still escalate to a high-level
accuracy as the epoch enlarges gradually.

Through the above analytics, we know that our proposed
GTAT can significantly improve the robustness against what-
ever weak adversarial examples or strong adversarial exam-
ples. This also exhibits two insights of our work: i) our
designed generated semi-hard Triplet can easily and cor-
rectively reshape the class boundaries on weak adversarial
examples; and ii) although the complexity of strong adversarial
examples slows down the convergence speed, our GTAT can
still appropriately relearn the class boundaries by mapping
the three-tuple (anchor, positive and negative) examples into
a distance-constraint vector space.

V. CONCLUSION

We figure out a generated Triplet-based adversarial training
method against various adversarial attacks. Concretely, three
remarkable contributions are provided. First, we analyze the
inherent vulnerabilities that deteriorate the performance of
various adversarial training methods from the perspectives of
easy and strong adversarial examples. Second, we propose
a classification boundary-reshaping idea through resorting to
generated semi-hard Triplet constraint with the purposes of
simplifying the refitting function and broadening the classifi-
cation boundaries across different classes. Third, multi-facet
experiments are produced to validate the effectiveness of our
proposed GTAT. Besides that, we also provide a microscopic
observation on the distribution variation of adversarial exam-
ples after executing adversarial training, and a fine-grained
verification on the boundary-reshaping. These comprehensive
experiments show our GTAT significantly outperforms the
representative baselines against a serial of while-box and
black-box attacks. We believe our work will shed a light on
the study of robustness of the deep neural network models.
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