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ABSTRACT

Trajectory similarity computation as the fundamental problem for
various downstream analytic tasks, such as trajectory classifica-
tion and clustering, has been extensively studied in recent years.
However, how to infer an accurate and robust similarity over two
trajectories is difficult due to some trajectory characteristics in
practice, e.g. non-uniform sampling rate, nonmalignant fluctuation,
noise points, etc. To circumvent such challenges, we in this paper
introduce the adversarial training idea into the trajectory repre-
sentation learning for the first time to enhance the robustness and
accuracy. Specifically, our proposed method AdvTraj2Vec has two
novelties: i) it perturbs the weight parameters of embedding layers
to learn a robust model to infer an accurate pairwise similarity
over each two trajectories; ii) it employs the GAN momentum to
harness the perturbation extent to which an appropriate trajectory
representation can be learned for the similarity computation. Ex-
tensive experiments using two real-world trajectory datasets Porto
and Beijing validate our proposed AdvTraj2Vec on the robustness
and accuracy aspects. The multi-facet results show that our Adv-
Traj2Vec significantly outperforms the state-of-the-art methods
in terms of different distortions, such as trajectory-point addition,
deletion, disturbance, and outlier injection.
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1 INTRODUCTION

A massive amount of trajectory data has been increasingly pro-
duced with the real-world applications of many smart devices, like
diversities of IoT sensors, location-aware mobile ends, GPS devices,
etc. Accordingly, how to mine the latent valuable information from
these trajectories has become the fundamental research spot in
recent years. In many trajectory-oriented domains, such as cluster-
ing, classification, anomaly detection, and regular prediction, the
trajectory similarity computation (TSC) as the core technique plays
the basic role to perform various studies. For instance, the TSC
can be utilized to find the potentially infected people who have a
similar trajectory with a COVID-19 infector. Beyond, TSC can be
applied to other tasks, such as sport-data analysis of athletes[25],
tracking migration patterns of animals [15], or urban planning [8].

At present, there mainly exist two categories of metrics on TSC:
pairwise trajectory-point distance and deep learning-generated
vector distance. The former usually requires a pairwise matching of
trajectory points and accumulates the distance information to indi-
cate the similarity over two trajectories, such as the representative
methods Dynamic Time Warping (DTW)[28], Edit distance with
Real Penalty[6], Hausdorff distance[3], Fréchet distance[2] and Edit
distance on real sequences (EDR)[7]. However, these methods are
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time-consuming and sensitive to noise points. The latter is based on
deep learning, that is to say, each trajectory can be embedded into a
vector, then compute the pairwise vector-distance as the similarity.
The existing methods are t2vec[14], T3S[26], NEUTRAJ[27], etc.
Compared to the pairwise trajectory-point-based TSC, the deep
learning-generated vector-based TSC has a lower time cost. This
is because the TSC becomes linear once the trajectory represen-
tation/embedding is completed. Nevertheless, most of the latter
methods did not take the robustness factor into account except
t2vec, i.e. when there exist somewhat fluctuations at some points
or some outlier/anomalous points. Even though the t2vec has a
consideration on the robustness through addition of limited data,
its performance on similarity computation accuracy declines sig-
nificantly. Our experiment shows that when each trajectory point
is perturbed, and the maximum perturbation amplitude is 75m, the
performance of t2vec will drop by 16%. The performance of t2vec
will also decrease by 12% when we add anomalous points in the
trajectory. In general, the TSC using a deep learning-generated
vector has a superior performance than that using the traditional
pairwise trajectory-points[14, 22], and our work aiming to enhance
the robustness property falls into this category.

For the robustness concern, we think there exist several facets
that could bring the challenges to TSC in terms of non-uniform
sampling rate, nonmalignant fluctuation, and unexpected noise.

Non-Uniform Sampling Rate. A real-world trajectory can be
depicted by different sets of data points, as shown in Figure 1(a) and
Figure 1(b), arising from the non-uniform sample rate. For example,
a taxi driver may flexibly alter the sampling rates given the consider-
ation on power consumption and other personal driving habits [29],
which will cause the inconsistent trajectory description/points even
on the same road segment. Furthermore, even though the sampling
rate is approximately uniform, the collected data points might be
different yet due to the changeful speeds. These different trajectory
descriptions for the same road segment incur difficulty for TSC,
given that the subtle incoordination will trigger the deep learning
to spawn an enormous change in the vector output.

Nonmalignant Fluctuation. Fluctuation in trajectory finger-
prints is sometimes nonmalignant due to some natural reasons. For
example, when traffic congestion takes place on the main road, the
driver may depart the main road to the auxiliary road, and vice
versa. In this situation, the TSC ought to tolerate this fluctuation
trajectory and still recognize it similar to the non-fluctuation state,
as shown in Figure 1(a) and Figure 1(c). That is to say, the deep
learning-generated vectors for the fluctuated trajectory and non-
fluctuated trajectory should have a close distance. Given the fact
that deep learning is a blackbox and consists of massive param-
eters, hence even a little fluctuation in the input trajectory, the
model will yield an obviously-changed output vector. Thereby, this
kind of nonmalignant trajectory fluctuation would deteriorate the
performance of the present-day deep learning pattern.

Noise Points. Considering the today’s location device is usu-
ally a mobile wireless communication endpoint, it is prone to be
interfered unexpectedly in communication channels, or even en-
countered some mischievous communication-layer attacks, such
as jamming attacks, man-in-the-middle attacks, spoofing attacks,
etc. Therefore, the noise points are indispensably fingerprinted for
these wireless location devices whatever caused unexpectedly or

(a) A real-world trajectory (b) A real-world trajectory with different sampling rate 

(c) A real-world trajectory with disturbance (d) A real-world trajectory with noise points 

Figure 1: An illustration of different trajectory scenarios.

intendedly. They will definitely produce a side-effect on the deep
learning model for the trajectory presentation learning.

With the purpose of overcoming the challenges above, we in this
paper propose an adversarial learning-based trajectory representa-
tion model AdvTraj2Vec to enhance the robustness and accuracy
of TSC in terms of the considerations on the inconsistent sampling
rate, nonmalignant fluctuation, and unexpected and intended noise.
Normally, the adversarial training is primarily applied in the com-
puter vision (CV) field to enhance the neural network’s robustness
by combating various adversarial/evasion attacks targeted at image
examples. Concretely, the adversarial training in CV is to employ
the adversarial/perturbed examples and original examples to jointly
retrain the neural network or merely use the adversarial examples
without the original examples. However, due to the convenience of
trajectory data processing, the space where the trajectory is located
is often divided based on grid [12]. The continuous coordinates
(i.e., longitude, latitude) are mapped into discrete tokens, there-
fore, the original trajectory becomes a sequence containing a series
of discrete tokens. Given the premise that the trajectory tokens
are integer values, it makes no sense to perturb the example data,
thereby, our work would perform adversarial training from another
viewpoint, i.e. perturb the embedding parameters rather than the
trajectory data itself. Another critical problem is the perturbation
amplitude, and an appropriate perturbation can promote the neural
network. Hence, we adopt the idea of the generative adversarial
network (GAN) to harness the perturbation amplitude.

To summarize, we conclude three main contributions as follows:
• We propose an adversarial training-based trajectory repre-
sentation model AdvTraj2Vec1 to enhance the robustness
and accuracy for TSC with respect to the practical occur-
rences of non-uniform sampling rate, nonmalignant fluctua-
tion, and unexpected or intended noise.
• Taking account of the perturbation amplitude, we propose a
GAN-guided function to compute an appropriate amplitude
for perturbation on the trajectory embedding, by which two
extreme-caused harmful effects by too large or too small
amplitudes will be alleviated.
• Multi-facet experiments are performed using two commonly-
used real-world trajectory datasets Porto and Beijing, and

1Our source code andmodel are available at https://github.com/xiran2018/AdvTraj2Vec
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Figure 2: Architecture of the AdvTraj2Vec. It consists of

two primitives. One is Encoder-Decoder which is leveraged

to learn a robust representation of trajectory with adversar-

ial training. The other is GANmodule, which is used to leash

perturbation amplitude onweight parameters in embedding

layers in a proper extent.

the experimental results validate that our proposed Adv-
Traj2Vec can significantly outperform the state-of-the-art
TSC methods in robustness and accuracy.

Organization. The remaining of our work is organized as fol-
lows. Section II presents the formal definitions and states the prob-
lem. We detail our AdvTraj2Vec model in Section III, report the
experiment evaluation in IV, comparatively analyze the related
work in Section V, and finally conclude this paper in VI.

2 PROBLEM DEFINITION

2.1 Definitions

Definition 1. (UNDERLYING ROUTE) An underlying route is a
theoretical concept with recording the locations continuously for
a moving object, it indicates the object’s exact path (a successive
spatial curve).

Definition 2. (TRAJECTORY) A trajectory is a sequence of sam-
ple points from the underlying route of a moving object.

In practice, an underlying route can be represented by a suite of
trajectories. It concretely depends on the specifics of the moving ob-
ject and the sampling strategies. For a referral trajectory, although
different trajectory sets are acquired under diverse sampling rates,
they still represent the same underlying route, that is to say, each
fingerprinted trajectory can be considered as one representative of
the same underlying route.

2.2 Problem Statement and Challenges

Problem Statement. Given a trajectory repository, our work aims
to learn a representation 𝒗 ∈ 𝑹𝑛 for each trajectory 𝑇 , and the
representation can appropriately elucidate the underlying route
of this trajectory 𝑇 for the pairwise similarity computation in a
robustness way against several affections, such as non-uniform
sampling rates, nonmalignant fluctuations, and noise points, etc.

Challenges.The encoder-decoder, as the popular learning frame-
work, has been witnessed to be successful to handle sequence data
in the procedure of TSC. However, when the uncertainty emerges
stemming from non-uniform sampling rate, fluctuation, and point
noise, the straightforward encoder-decoder cannot learn proper
embedding vectors for such unexpectedly/intendedly-perturbed tra-
jectories. To circumvent this problem, we proposed an adversarial
training framework to enhance the robustness and accuracy for the
trajectory similarity inference. The main novelties are twofold: i)
embedding parameter-oriented adversarial training, which aims to
tolerate more uncertainty cases, further for robustness promotion;
ii) harnessing the amplitude of perturbation, which aims to provide
insight into the extent to which the perturbation is constrained
properly. Through twofold novelties, our proposed framework can
learn an appropriate embedding vector for each trajectory for the
robust TSC problem.

3 THE PROPOSED MODEL

3.1 Framework Overview

Two modules reside at the heart of our framework as shown in
Figure 2: i) adversarial training-guided encoder-decoder. Herein the
encoder is to encode the input sequence 𝑇 into a fixed-dimension
embedding vector 𝒗, while the decoder is to decode the sequence
upon the encoding representation. With the addition of adversarial
training into this encoder-decoder primitive, the weight parameters
of embedding vectors are perturbed in a proper range to enhance
the robustness of the model; and ii) GAN-controlled perturbation
amplitude. How to decide the extent to which the proper perturba-
tion is yielded during the learning course is the critical point. Here
we utilize the GAN to harness the perturbation with the guarantee
that the amplitude is neither too large nor too small, achieving the
generalization of the spawned model.

3.2 Adversarial Training-Guided

Encoder-Decoder

Trajectory-Oriented Encoder-Decoder Procedure. As for the
sequence characteristic of trajectory, the continuous coordinates
ought to bemapped into discrete tokens beforehand, then they serve
as input data to the encoder primitive. Hereinwe still use the routine
spatial-date processing strategy to produce tokens, specifically, the
trajectory space is partitioned into equal-size cells [13], and each
cell is recognized as a token. It is worth noting that all sample points
falling into the same cell will be deemed as the same token.

Normally, the encoder-decoder primitive must maximize the
conditional probability 𝑷 (𝑅 |𝑇 ), implying that it can find the most
likely underlying route 𝑅 for the given trajectory 𝑇 . The input of
such encoder-decoder primitive is the trajectory sequence with a
low sampling rate, While the output is a trajectory sequence with
a high sampling rate.

In order to train a decent encoder-decoder primitive, we sam-
ple two trajectories from one trajectory with different sampling
rates. The trajectory with a lower sampling rate is called 𝑇𝑎 , and
the trajectory with a higher sampling rate is called 𝑇𝑏 . However,
both the two fingerprint trajectories are the representation of the
same underlying route. These observations cause us to replace the
objective of maximizing 𝑷 (𝑅 |𝑇𝑎) with the objective of maximizing
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𝑷 (𝑇𝑏 |𝑇𝑎). The encoder embeds 𝑇𝑎 into its representation 𝒗, and the
decoder will try to recover its counterpart 𝑇𝑏 with relatively high
sampling rate conditioned on 𝒗.

Adversarial Training towards Embedding Weight Param-

eters. Recall that a trajectory is elucidated by partitioning it into
a suite of equal-size cells (a.k.a. tokens), and all the points falling
into the same cell are recognized as the same token. Currently,
each token is presented as an integer number, in other words, the
input to the model must a positive integer. Thereby, we think that
it makes no sense to perturb such token-symbol values, e.g. change
a token value from 7 to 7.2. Because even the integer value rep-
resenting the trajectory point is perturbed to become a floating
point number to enhance the robustness of the model. But when
the model is actually used, the inputs to the model are all integer
values. That is to say, the model trained in this way cannot enhance
the robustness for the actual input. Moreover, it would be difficult
to create adversarial examples for the clean trajectory examples.
This is because the perturbed trajectories remain agnostic whether
such perturbation can still maintain the label unchanged in the
case of no human intervention, providing that the label/purport is
subject to the trajectory context [19].

Upon the above restriction of perturbation on actual trajec-
tory data, we naturally switch our attention from trajectory-data
space to the trajectory-embedding space, i.e. attempt to perturb the
weight parameters of embedding layers of the encoder primitive,
rather than the traditional actual data variation. Specifically, we
utilize a gradient-based manner to produce norm-bounded adver-
sarial perturbation on the weight parameter of embedding layers.
Clearly, such embedding-level adversarial manipulation can be
strictly stronger than that of token-level perturbation.

We denote the sequence of an input trajectory as𝑻 = [𝑡1, 𝑡2, ..., 𝑡𝑛],
the embedding matrix as 𝑬 , the encoder as a function 𝒗 = 𝑓𝜃 (𝑿 ),
and the decoder as a function 𝒚 = 𝑓𝑑 (𝑓𝜃 (𝑿 )) where 𝑿 = 𝑬𝑻 is the
trajectory embeddings, 𝒗 is the output of the encoder, 𝒚 is the out-
put of the decoder, and 𝜃 denotes all the encoder-decoder-related
parameters including the embedding matrix 𝑬 .

The adversarial training-guided trajectory embedding procedure
is detailed as follows. First, we compute the loss for input trajectory
𝑻 and acquire the gradient 𝑔 by backpropagation. Second, we define
the following formula to execute adversarial perturbation 𝜹 ′ for
the embedding matrix (weigh parameters of embedding layers)
according to the gradient information of 𝑬 .

𝜹 ′ = 𝜖 · (𝒈𝒆/| |𝒈𝒆 | |2), (1)

where the gradient of 𝑬 is denoted as 𝒈𝒆 . The value of 𝑬 is updated
along the direction of the gradient to maximize the loss. The param-
eter 𝜖 is artificially determined. Third, we add 𝜹 ′ to the embeddings
such that the prediction becomes𝒚′=𝑓𝑑 (𝑓𝜃 ((𝑬+𝜹 ′)𝑻 )). To preserve
the semantics, we constrain the norm of 𝜹 ′ within a reasonable
range, with the purpose of warranting the model’s resultant pre-
diction cannot change largely after the perturbation. Afterwards,
we can get the encoder output 𝒗 ′.

3.3 GAN-Controlled Perturbation Amplitude

As shown in formula (1), the coefficient 𝜖 reflects the amplitude
of the perturbation, which causes a straightforward and critical

affection on the adversarial training efficiency. That is to say, ex-
cessive disturbance (too large perturbation) will have side effects
on the model representation. However, the very tiny perturbation
may not work. Thereby, we in this paper employ the GAN to leash
the perturbation range in an adequate way, by which a rational
perturbation range can be guaranteed.

As we know, the GAN consists of two parts, i.e. Generator and
Discriminator. In our work, the Generator is used to capture the
distribution of the encoding representation 𝒗. At first, the inputs of
the Generator are random seed 𝑧 under the normal distribution in
the course of GAN training, and the outputs are the same-dimension
vectors 𝒇 as 𝒗. On the other side, the Discriminator is a binary
classifier with the purpose of judging whether its input is “real
data” or not, i.e. the original vector representation. Specifically, the
inputs are 𝒗 and 𝒇 , along with a ground truth label representing
positive and negative samples. In particular, the ground truth labels
of 𝒗 and 𝒇 are 0 and 1 respectively. The Discriminator would output
a score 𝑠𝑑 for each input to reflect the amplitude of trajectory
perturbation. A big score 𝑠𝑑 means the input of the Discriminator
is unlikely to be a “real data”, in other words, the perturbation
amplitude for the embedding matrix 𝑬 is too large, rendering an
enormous dissimilarity of the inputs.

In the procedure of adversarial training, the Discriminator aims
to judge how similar between encoder output 𝒗 ′ and encoding
representation 𝒗. In order to look for an appropriate perturbation,
we herein set a threshold 𝑎 to leash the amplitude. Concretely, the
Discriminator output score 𝑠𝑑 only works for the trajectories that
its perturbation amplitude is larger than the threshold 𝑎 by function
ℎ, thus we have the following formula

ℎ(𝑠𝑑 ) =
{

1 𝑠𝑑 < 𝑎

𝑠𝑑 𝑠𝑑 >= 𝑎.
(2)

Accordingly, we modify the previously-defined adversarial per-
turbation and multiplied it by the function ℎ(𝑠𝑑 ) to decrease the
gradient for the limitation on the perturbation amplitude adaptively.

𝜹 = ℎ(𝑠𝑑 ) · 𝜹 ′ = ℎ(𝑠𝑑 ) · 𝜖 · (𝒈𝒆/| |𝒈𝒆 | |2) . (3)

3.4 Loss Function Elaboration

Given a sampled trajectory presented by the sampled-point set
{𝑡 (𝑖)
𝑏
}𝑁
𝑖=1, and N denotes the number of sampled points. We create

a pair of trajectory-point sets (𝑡𝑎, 𝑡𝑏 ), wherein 𝑡𝑏 is the original
trajectory and 𝑡𝑎 is obtained by randomly dropping sample points
from 𝑡𝑏 with dropping rate 𝑟1. We deem that such a non-uniform
trajectory set 𝑡𝑎 after downsampling would be in practice an un-
even trajectory with a low sampling rate. In order to keep the basic
path of the down sampling trajectory unchanged as a rule of thumb,
the start point and end point of 𝑡𝑏 are retained in 𝑡𝑎 . In the training
process, we normally need to maximize the joint probability of all
(𝑡𝑎, 𝑡𝑏 ) pairs with the encoder-decoder model to prevent downsam-
pling trajectory set 𝑡𝑏 from deviating the original trajectory set 𝑡𝑎
to a large extent:

maximize
N∏
i=1

P(t(i)b |t
(i)
a ) . (4)
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The sequence encoder-decoder is trained through achieving the
loss function-constrained objective optimization as mathematically
defined in Equation 5. In order to make the loss function reflect the
spatial proximity, we in this paper use the different weights to leash
the cell as did in t2vec[14]. That is to say, while the target unit 𝑦𝑡
is tried to decode from the decoder part, a weight is assigned to
each cell. The weight of cell 𝑢 ∈ 𝑉 is inversely proportional to its
spatial distance from the target cell 𝑦𝑡 . The closer the cell is to 𝑦𝑡 ,
the greater the weight are assigned. Correspondingly, the loss of
spatial proximity perception is defined as follows:

L = −
|𝑦 |∑
𝑡=1

∑
𝑢∈𝑉

𝜔𝑢𝑦𝑡

(
𝑊 ⊤𝑢 ℎ𝑡 −

∑
𝑣∈𝑉

exp(𝑊𝑇
𝑣 ℎ𝑡 )

)
, (5)

𝜔𝑢𝑦𝑡 =
exp(−||𝑢 − 𝑦𝑡 | |2/𝜃 )∑

𝑣∈𝑉 exp(−||𝑣 − 𝑦𝑡 | |2/𝜃 )
, (6)

where ℎ𝑡 is the hidden state of the decoder,𝑊 ⊤ is the projection
matrix that projectsℎ𝑡 into the cells, and𝑊 ⊤𝑢 is the𝑢-𝑡ℎ row.𝜔𝑢𝑦𝑡 is
the spatial proximity weight of cell 𝑢 when decoding target 𝑦𝑡 , and
| |𝑢 − 𝑦𝑡 | |2 represents the distance between cell center coordinates.
𝜃 > 0 is a spatial distance penalty parameter, which encourages the
model to learn the cells near the output target cell 𝑦𝑡 .

GAN Loss. The GAN is leveraged to conduct the amplitude of
trajectory perturbation. First, the Discriminator is trained, then the
Generator is followed. They are cooperative to conduct the adver-
sarial training process with proper iteration/convergence rounds.

The overall learning process is shown in Algorithm 1:
1) Random sampling is carried out from normal distribution to

generate the fake representation of the trajectories.
2) The real trajectory representation from encoder 𝒗 and the

representation from generator 𝒛 are fed into the Discrimina-
tor which can score whether the data is true or false.

3) We train the Generator with the data recollected from the
normal distribution. Note that the Generator is trained based
on the Discriminator.

4) The GAN model after training is introduced into the process
of adversarial training. The disturbance will be dynamically
adjusted based on the output of the Discriminator during
the adversarial training, as shown in Line21.

5) The above process will be repeated during training. The
Discriminator can effectively judge the similarity between
the real trajectory representation 𝒗 and the representation
generated by the generator, so as to adaptively adjust the am-
plitude of the adversarial disturbance. The encoder-decoder
model and the GAN model will interact to reach an approx-
imate convergence state during the training of the model.
At this moment, the trajectory representation output by the
encoder will tend to be stable.

4 EXPERIMENTS

Prior to mentioning the experiment detail for the validation of our
proposed method, we first declare that our multi-facet experiments
aim to answer the following three concerned questions:

• EQ1: What is the performance when traditional TSC meets the
adversarial training?

Algorithm 1: "AdvTraj2Vec Algorithm"
Input: perturbation bound 𝜖 , ascent steps 𝑘 , trajectory

database 𝑫

1 for epoch=1. . .𝑁𝑒𝑝 do

2 for 𝑘 steps do
3 Sample mini-batch of𝑚 examples {𝑻 (1) , ..., 𝑻 (𝒎) }

from 𝑫 ;
4 Get the representation {𝒗 (1) , ..., 𝒗 (𝒎) } encoded by

the encoder 𝒗 (𝒊) = 𝑓𝜃 (𝑻 (𝒊) );
5 Sample mini-batch of𝑚 samples {𝒛 (1) , ..., 𝒛 (𝒎) }

from normal distribution;
6 Update the Discriminator:

∇𝜃𝑑
1
𝑚

∑𝑚
𝑖=1

[
log𝐷

(
𝒗 (𝑖)

)
+ log

(
1 − 𝐷

(
𝐺

(
𝑧 (𝑖)

)))]
;

7 end

8 Sample mini-batch of m noise samples {𝒛 (1) , ..., 𝒛 (𝒎) }
from normal distribution;

9 Update the Generator:

∇𝜃𝑔
1
𝑚

∑𝑚
𝑖=1 log

(
1 − 𝐷

(
𝐺

(
𝑧 (𝑖)

)))
;

10 for minibatch 𝐵 ⊂ 𝑫 do

11 Get the decoder output 𝑦;
12 𝑦 = 𝑓𝑑 (𝑓𝜃 (𝑬𝑩));
13 Update gradients to update 𝜹 ′;
14 𝒈𝒆,𝒈 ← 𝑬 (𝑍,𝑦) ∈𝐵 [∇𝜃 𝑓𝑑 (𝑓𝜃 (𝑬𝑩)), 𝑦];
15 𝜹 ′ ← 𝜖 · (𝒈𝒆/| |𝒈𝒆 | |2);
16 Get the encoder output 𝒗 ′ ;
17 𝒗 ′ = 𝑓𝜃 ((𝑬 + 𝜹 ′)𝑩);
18 Using the Discriminator to score;
19 𝑠𝑑 ← 𝐷 (𝒗 ′);
20 Limit the amplitude of the disturbance;
21 𝜹 ← ℎ(𝑠𝑑 ) · 𝜖 · (𝒈𝒆/| |𝒈𝒆 | |2);
22 Get the limited return gradient 𝑔𝑎𝑑𝑣 and update 𝑔;
23 𝒈𝒂𝒅𝒗 ← 𝑬 (𝑍,𝑦) ∈𝐵 [∇𝜃𝐿(𝑓𝜃 ((𝑬 + 𝜹)𝑩)), 𝑦];
24 𝒈 ← 𝒈 + 𝒈𝒂𝒅𝒗 ;
25 Update all the parameters in the model;
26 end

27 end

• EQ2: How is the robustness of AdvTraj2Vec compared to the
state-of-the-art TSC baselines?

• EQ3: What is the respective impact of each module of our
proposed AdvTraj2Vec on the robustness and accuracy?

Table 1: Dataset statistics

Dataset Points Trips Mean length
Porto 74269739 1233766 60
Beijing 316744 8214 80
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4.1 Experimental Settings

Datasets.Our experiments are conducted on two real-world datasets
captured in Porto and Beijing. The dataset in Porto[17] contains
1.7 million taxi trajectories with a period of 12 months from July
2013 to June 2014. In consideration of the usefulness of the datasets,
we delete those trajectories less than 30 in length as did in t2vec,
and finally fingerprint 1.2 million trajectories for our experiment.
The dataset in Beijing[30], also called Geolife, contains 17621 tra-
jectories collected from April 2007 to August 2012. We also choose
those trajectories that satisfy at least 30 in length, and a less than
20-second time interval between consecutive sampling points, such
operation produces 8214 trajectories. In addition, the datasets are
also divided into two parts, i.e. training data and test data. For the
Porto dataset, the training data consists of 800,000 trajectories, and
the remaining are used for testing data. For the Geolife dataset, the
first 4928 trajectories are used for training data, and the remaining
are used for testing data. The statistics on the two cities’ trajectory
datasets are shown in Table 1.

In order to train a robust and accurate TSC method, at first we
usually need down-sample the original trajectory with a dropping
rate in the interval [0, 0.2, 0.4, 0.6], then perform the distortion with
the probability range [0, 0.2, 0.4, 0.6] following the strategy in t2vec,
and finally each trajectory Ti would generate 16 data pairs (Tj,Ti).
Baseline Methods.We employ six widely-used baselines to vali-
date the performance of our approach, these baselines can be classi-
fied into two categories: i) the traditional method based on pairwise-
point alignment. The representativeworks include EDR[7], LCSS[23],
and EDwP [18]. LCSS and EDR are the two most widely used tra-
jectory similarity measures in spatiotemporal data analysis. EDwP
is currently a relatively advanced method for measuring the simi-
larity of non-uniform and low sampling rate trajectories.; and ii)
the trajectory representation-learning methods. The vanilla RNN
(vRNN)[9] and T2vec[14] are the two representatives. vRNN is com-
pared with our model as the basic method of deep learning. T2vec
is the state-of-the-art method for measuring similarity among the
deep learning methods. In addition, we also compared with the
common set representation (CMS) method just as t2vec. CMS com-
putes the similarity of two trajectories based on their common set
after they have been mapped to cells.

Additionally, with the purpose of a microscopic observation on
our proposed method, we exhibit two kinds of ablations of Adv-
Traj2Vec: i) the GAN-controlled perturbation amplitude module
in AdvTraj2Vec is removed to test the effectiveness of harnessing
the extent to which the trajectory perturbation is well-matched to
promote the robustness. We denote this variant as AdvTraj2Vec-
noGAN; and ii) we use the multi-iteration perturbation fashion in
our model, denoted as AdvTraj2Vec-MIP, to test the effectiveness
of AdvTraj2Vec. This method will execute perturbation multiple
times for each round of adversarial training.
Evaluation Metrics. At present, given that the performance eval-
uation for TSC is still a challenging problem due to the scarcity of
ground truth dataset, some works hence [14, 18, 21] suggested some
other reasonable metrics to alternatively perform accuracy evalua-
tion, i.e. leverage the most-similar search to assess the precision.
Our experiment follows such performance metrics as well.

The dataset used in our experiments is generated using the fol-
lowing strategy. First, we select 10,000 and 100 trajectories from the
Porto and Beijing test datasets respectively, denoted asQ, and create
two sub-trajectories for each trajectory by alternately extracting
some points, denoted as 𝑇𝑎 and 𝑇 ′𝑎 . Then, we choose another 𝑚
trajectories, denoted as P, and process each trajectory as the above
operation, denoted as 𝑇𝑏 and 𝑇 ′

𝑏
. Afterwards, we implement the

most-similar search queries, and each trajectory in 𝑇𝑎 will obtain
the top-𝑘 most similar trajectories from database 𝑇 ′𝑎

⋃
𝑇 ′
𝑏
. We cal-

culate the rank of 𝑇 ′𝑎 to indicate the quality/performance of the
method. In principle, the better the method behaves, the lower the
calculated rank would be.

4.2 Performance Evaluation

4.2.1 Performance with Adversarial Training. To answer the EQ1
above, we comparatively analyze the performance of AdvTraj2Vec
with adversarial training and other baseline methods without -
deep/adversarial training under the dataset setting that enlarges
the size of P from 20,000 to 100,000 for Porto and from 200 to
1,000 for Beijing to better facilitate experiment evaluation. Table 2
exhibits the mean response/answering rank for 1,000 queries under
Porto and Beijing datasets.

Seen from the experimental results, we can have three impor-
tant observations: i) obviously, there exists a clear gap between the
pairwise trajectory-point-based TSC methods (EDR, LCSS, CMS,
vRNN, EDwP) and deep learning-generated trajectory representa-
tion methods (t2vec, AdvTraj2Vec). This indicates the methods in
conjunction with deep learning would significantly outperform the
traditional methods. We think the behind reason lies in the basic
fact that the deep learning-based trajectory representation meth-
ods could learn a more appropriate embedding vector to represent
one trajectory with the capability of learning its latent characteris-
tics, compared to the traditional pairwise trajectory-points-based
methods; ii) the mean rank declines to a different extent for all
the methods as the size of another trajectory set P increases. This
result is in a normal case when the massive extra (somewhat un-
correlated) trajectories are added to the test dataset. However, the
different-level performance just reflects the exact robustness and ac-
curacy of such methods even with a deterioration tendency; and iii)
in general, our proposed AdvTraj2Vec has the best performance
with a large margin compared to other baselines. For example, the
mean rank improves 18.9% and 9.0% for Porto and Beijing compared
with the best-baseline t2vec while the number of P is 20,000 and
200 respectively. Meanwhile, AdvTraj2Vec outperforms 28.4% and
26.4% while the size of P reaches up to 100,000 and 1000.

This observation further unveils that the adversarial learning
with harnessed perturbation on weight parameters in the embed-
ding layers can indeed enhance the performance to a large extent
in this similar trajectory search task. We believe our method with
adversarial training can be extended to other TSC-related tasks.

4.2.2 Robustness with Trajectory Distortions. To answer EQ2, i.e.
the robustness verification, we deliberately figure out four kinds of
trajectory distortions by design as shown in Table 3 in terms of sam-
pling points addition, deletion, disturbance, and outlier injection.
The trajectory transformations are controlled by three indicators:
ratio, sampling rate and distance, herein the ratio represents how
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Table 2: Mean rank versus the database size using Porto and Beijing datasets.

Porto Beijing
Methods 20k 40k 60k 80k 100k 200 400 600 800 1000
EDR 26.89 49.12 73.32 105.2 132.09 89.5 109.9 128.7 140.6 155.9
LCSS 32.17 60.25 96.75 141.29 160.27 65.4 118.93 135.98 170.09 189.3
CMS 63.81 105.76 159.32 226.17 286.78 74.78 120.87 173.43 229.54 292.76
vRNN 31.03 59.72 97.35 131.79 159.2 63.21 115.79 134.89 165.66 178.23
EDwP 6.49 12.14 17.28 22.34 27.79 3.51 5.99 6.77 8.24 8.97
T2vec 2.28 3.47 4.68 6.17 7.39 1.22 1.33 1.48 1.62 1.74

AdvTraj2Vec 1.85 2.62 3.42 4.46 5.29 1.11 1.19 1.21 1.24 1.28

Table 3: Trajectory transformations.

Transformation type Transformation

Point shift
Add sampling points
Delete sampling points
Disturb sampling points

Noise Inject outlier

Figure 3: Mean rank calculation in the case of addition of

trajectory points with different ratios.

many points are transformed in a trajectory; the sampling rate de-
termines how many trajectories are transformed and the distance
specifies how far one trajectory point can be deviated from the
original location.

Robustness with Trajectory Point Addition. We verify the
robustness of AdvTraj2Vec by deliberately adding some points
to the trajectory. Specifically we can add a point 𝑝𝑠 between two
consecutive points 𝑝𝑖 and 𝑝𝑖+1 and set its coordinate as the mean
value of the coordinate 𝑝𝑖 and coordinate 𝑝𝑖+1. Moreover, the num-
ber of points needed to add is determined by the indicator ratio.
In our experiment, we set the ratios as 50% and the sampling rate
as 20%, 40% and 60% respectively. Figure 3 shows the mean rank
under the three sampling rates. From the experimental results, we
can see that EDwP performs the worst with a large margin, stem-
ming from the fact its performance merely depends on the quality
of the dataset, i.e. the matching caliber of sampling points over
two trajectories. For the deep learning methods, AdvTraj2Vec has
better performance than t2vec, and the robustness of our proposed
AdvTraj2Vec becomes more apparent as the amount of test data
increases. For example, when the size is 100k, the performance of
our AdvTraj2Vec is improved by 6.7%, 17.0%, 13.8% respectively,
corresponding to the three sampling rates 20%, 40% and 60%.

Robustness with Trajectory Point Deletion. Inversely, we
in this case remove some points in each trajectory using the ratios

Figure 4: Mean rank calculation in the case of deletion of

trajectory points with different ratios.

Figure 5: Mean rank calculation in the case of distance dis-

turbance with different ratios.

20%, 40% and 60%. Figure 4 shows the mean rank, from which we
can see that our AdvTraj2Vec still has the best performance as
the ratio of point deletion enlarges. For instance, the performance
of our model improved 23.4%, 26.4%, 29.8%, 31.2%, 26.8% when the
ratio is 0.6 under dataset sizes 20k, 40k, 60k, 80k and 100k, compared
to the best baseline method t2vec.

Robustness with Trajectory Disturbance. Keeping the three
ratios unchanged, i.e. 20%, 40% and 60%, we perturb the points in
each trajectory through deviate the distance 10m, 20m, 30m from
the original point location respectively. We obtain the experiment
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Figure 6: Mean rank calculation under outlier injectionwith

different ratios.

result as shown in Figure 5. From the figure, we can see that our
AdvTraj2Vec performs significantly better than t2vec. In particular,
as the size of the test dataset increases, the gap becomes larger
and larger. This is because as the number of query trajectories
increases, the TSC between different trajectories would be strictly
affected by the fluctuation/deviation points. That is to say, t2vec
would become more sensitive to the perturbation of trajectory
samples with the routine deep learning fashion, leading to poor
performance on such disturbed trajectory datasets. Nevertheless,
our proposed AdvTraj2Vec, proving that adversarial training is
introduced to enhance the robustness, has optimized the model
(neural network) parameters during the training process, thus it
has better robustness.

Robustness with Outlier Injection. Remaining the sampling
rate same as the previous setting, i.e. 20%, 40% and 60%, the point
ratio is set to 25%. We inject outliers with the distance 75m to the
original trajectory w.r.t. our statistics that the average distance
between trajectory points is 75m as well. The experimental results
are exhibited in Figure 6, from which we can see that, similar to
other cases, our model achieves better performance regardless of
the data size. This is because the outlier injection may bring in
incorrect inference while disregarding such noise samples during
the course of deep learning in a regular way, especially trained on
a clean dataset. Differently, our AdvTraj2Vec alternatively handle
this noise-data case through perturbing the weight parameters in
the embedding layers, thereby, our method can better adapt to the
noise data-injection scenario.

To sum up, the four groups of experimental results verify the
adversarial training idea can validly enhance the robustness of
our proposed AdvTraj2Vec in terms of trajectory points addition,
deletion, disturbance, or even uncorrelated outlier injection.

4.2.3 Ablation Study. To answer EQ3, the functionalities of two
radical components are investigated: i) when there does not exist
the GAN module to control perturbation amplitude; ii) when the
multi-iteration perturbations can be applicable into the course of
perturbation. We execute the ablation experiments and present the
results in Table 4, from which we can observe that AdvTraj2Vec-
noGAN behaves worse than AdvTraj2Vec, e.g. the performance
drops by 11% when the dataset size is 100K. This implies the per-
turbation should not be in the wild, but rather in the control. That
is to say, the harness functionality of GAN plays an important role
to guide the perturbation in a proper pitch. During the model train-
ing course, the output of the model ought to be recognized the
same as the original trajectory after adversarial perturbation on

Table 4: The ablation experimental results on Porto dataset.

20K 40K 60K 80K 100K
AdvTraj2Vec-noGAN 1.979 2.893 3.865 4.942 5.832
AdvTraj2Vec-MIP 2.214 3.317 4.532 6.022 7.224

AdvTraj2Vec 1.85 2.62 3.42 4.46 5.29

Table 5: Time cost for model training on Porto dataset.

AdvTraj2Vec T2vec
Time 8.10h 6.22h

the trajectory. After the multi-iteration perturbations, we can see
the experimental results of AdvTraj2Vec-MIP are not good com-
pared to AdvTraj2Vec, even worse than AdvTraj2Vec-noGAN,
e.g., the accuracy in AdvTraj2Vec-MIP are reduced by 11.8%, 14.6%,
17.2%, 21.8% and 23.9% compared to that in AdvTraj2Vec-noGAN
in terms of 20k, 40k, 60k, 80k and 100k. This point shows that
multi-iteration perturbation cannot further accelerate the effect of
adversarial training, which reversely verifies that the perturbation
should be constrained appropriately for each trajectory.

4.2.4 Scalability. We compare the training time of T2vec and Adv-
Traj2Vec. The training data for the experiment is 800k trajectories.
It can be seen from the table 5 that the training time of AdvTraj2Vec
is slightly longer than that of T2vec. The reason is that AdvTraj2Vec
needs to continuously update the model based on adversarial train-
ing and the discriminator to generate better parameters.

4.3 Parameter Sensitivity Study

4.3.1 Selection of Threshold 𝑎. The threshold 𝑎 specifies the pertur-
bation amount. In this subsection, we would investigate the effect of
the value of 𝑎 using the dataset Porto. As defined in the formula (2),
a larger threshold means a bigger perturbation. In our experiment,
the size of query dataset |𝑇 ′𝑎

⋃
𝑇 ′
𝑏
| is fixed to 100,000 in the testing

phase, and the mean rank results are drawn in Figure 7.
From the curve, we can see the performance is poor when the

threshold 𝑎 is small, that is to say, the allowed perturbation on the
embedding parameters is too small to make the adversarial training
play an enhanced effect. As the threshold enlarges gradually, the
performance becomes better and better, and arrives at the lowest
point (best performance) at 𝑎=0.7. However, when the threshold

Figure 7: The impact of the threshold 𝑎 on the model.
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Table 6: The impact of the hidden layer size of GAN.

20K 40K 60K 80K 100K
3 1.94 2.72 3.73 4.80 5.49
9 1.92 2.73 3.53 4.80 5.39
12 1.85 2.62 3.42 4.46 5.29

15 1.85 2.73 3.43 4.47 5.30
18 1.94 2.98 3.75 4.47 5.53

increases consistently, the performance begins to deteriorate, which
indicates the allowed perturbation might be too large. The lowest
point (a.k.a. the smallest mean rank) represents a reasonable tra-
jectory perturbation to the original trajectory for the adversarial
training. Therefore we set the threshold equal to 0.7 as the condition
to decide how much perturbation should be executed.

4.3.2 The Influence of the number of Hidden Layers of GAN. We
further investigate the effect of the size of hidden layers under
the task of trajectory search with the threshold 𝑎= 0.7. The exper-
imental results are shown in Table 6. We find that when the size
of hidden layers increases from 3, 9, to 12, the performance gradu-
ally improves, this tendency reflects that the larger size of hidden
layers could enhance the recognition on trajectory representation.
Nevertheless, the performance has a slight deterioration while con-
sistently increasing the size of hidden layers, that is to say, there
may exist a somewhat overfitting phenomenon if too many hidden
layers are employed. Thereby, we set the size of the hidden layer in
GAN primitive as 12 to enable it equipped with a good recognition
capability on trajectory representation.

5 RELATEDWORK

5.1 Adversarial learning

Adversarial training, aiming to combat against adversarial attacks,
is mainly utilized to improve the robustness of model inference in
CV through co-training original clean examples and adversarial
examples generated by the pixel perturbation or retraining the ad-
versarial examples merely. We opine that the essence of promoting
robustness is due to the data augmentation, namely, the adversarial
examples enforce the deep learning models to learn attack-resilient
parameters to withstand various adversarial attacks, in this way,
the model would enhance the performance robustness.

Our work alternatively attempts to perturb the weight parame-
ters of the embedding layer instead of trajectory points. Further-
more, in order to harness the magnitude of weight modification,
we also employ the GAN-spawned distortion to guide the concrete
modification, and keep the perturbation neither too large nor too
small.

5.2 Trajectory Similarity Computation

The problem of TSC has been extensively calibrated in terms of
spatiotemporal-distancemeasures and trajectory-sequence distance
measures. The former regards the trajectory’s both spatial and
temporal attributes, while the latter only takes into account the
spatial information. This paper focuses on the sequence measures.

For trajectory-sequence distance measure, this line of research
can be further divided into two subcategories: i) the pairwise trajectory-
point distance, and ii) deep learning-generated vector distance. In
the first subcategory, DTW[28] was the first work to treat with the
local time shift issue, and it searched for the smallest aligned-points
distance over two trajectories. Moreover, the longest common sub-
sequence (LCSS) [23] measure and the edit-distance-based measure
[1, 5, 6, 10] only employ partial-match metrics for TSC. However,
the above matching strategy only selects the optimally-matched
data points in the trajectory. It ignores the trajectory-noise exis-
tence caused by whatever unexpected determinant [20, 24], that is
to say, these methods did not take the robustness into account. In or-
der to solve this robustness problem, Edit distance with projections
(EDwP)[4, 11, 16, 18] were proposed, such that EDwP used dy-
namic interpolation to match trajectory points. The difference lies
in that our work strengthens the robustness by adversarial learning
on the representation of the trajectory, rather than modifying the
matching strategy of trajectory points.

The second subcategory is to utilize deep learning to infer the
trajectory similarity through computing the distance of the learned
embeddings[14, 26, 27]. T2vec[14] was the representative attempt
to embed trajectories into vectors for similarity inference using
unsupervised methods. It enhanced robustness by modifying or
generating data. On the one hand, the number of trajectories gen-
erated is limited. On the other hand, the modification strategies are
based on the independent perturbation of a single point without
considering the contextual relationship of the trajectory. So the
modification may not fit to advance the robustness. Furthermore,
T3S[26] and NEUTRAJ[27] are supervised methods to learn trajec-
tory representations. Nevertheless, these DL-based TSC methods
did not encompass the robustness issue, which implies that even
a slight change in trajectory or a different trajectory scenario can
deduce a big deterioration in accuracy.

6 CONCLUSION

To the best of our knowledge, we introduce the adversarial training
idea into the trajectory similarity computation domain for the first
time, and the extensive experiments also validate our work with
the comparison to other baselines. There are mainly two novelties
in our proposed AdvTraj2Vec. First, unlike the regular operation,
it does not perturb the original trajectory data in the course of ad-
versarial training, but rather disturbs the weight parameters of the
embedding layer to enhance the robustness and accuracy. Second,
as aforementioned, the perturbation amplitude plays a critical role
during the adversarial training, thus, we employ the GAN primitive
to adjust the extent to which an appropriate perturbation would be
spawned. Upon two realistic trajectory datasets Porto and Beijing,
multi-facet experiments verify that our proposed AdvTraj2Vec
can achieve superior performance on the robustness and accuracy
than the state-of-the-art TSC methods.

Our work sheds light on trajectory data analytics by introducing
adversarial training, however, we think there may exist several in-
teresting questions worthwhile to be explored in the future. Firstly,
we can extend our work into a specific measurement, for example,
NEUTRAJ. Secondly, we can apply our AdvTraj2Vec to other tasks,
such as anomaly detection and clustering.
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